Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities
نویسندگان
چکیده
In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.
منابع مشابه
Convergence rates for Morozov’s Discrepancy Principle using Variational Inequalities
We derive convergence rates for Tikhonov-type regularization with convex penalty terms, where the regularization parameter is chosen according to Morozov’s discrepancy principle and variational inequalities are used to generalize classical source and nonlinearity conditions. Rates are obtained first with respect to the Bregman distance and a Taylor-type distance and those results are combined t...
متن کاملJu n 20 09 A new approach to source conditions in regularization with general residual term
This paper addresses Tikhonov like regularization methods with convex penalty functionals for solving nonlinear ill-posed operator equations formulated in Banach or, more general, topological spaces. We present an approach for proving convergence rates which combines advantages of approximate source conditions and variational inequalities. Precisely, our technique provides both a wide range of ...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملAn extension of the variational inequality approach for obtaining convergence rates in regularization of nonlinear ill-posed problems
Convergence rates results for Tikhonov regularization of nonlinear ill-posed operator equations in abstract function spaces require the handling of both smoothness conditions imposed on the solution and structural conditions expressing the character of nonlinearity. Recently, the distinguished role of variational inequalities holding on some level sets was outlined for obtaining convergence rat...
متن کامل